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Abstract—This study is an extension of a previous investigation of the combined effect of axi-
symmetric thickness variation and axisymmetric initial geometric imperfection on buckling of
isotropic shells under uniform axial compression. Here the anisotropic cylindrical shells are inves-
tigated by means of Koiter’s energy criterion. An asymptotic formula is derived which can be
used to determine the critical buckling load for composite shells with combined initial geometric
imperfection and thickness variation. Results are compared with those obtained by the software
packages BOSOR4 and PANDA2. © 1997 Elsevier Science Ltd.

1. INTRODUCTION

Due to various factors in the manufacturing process, thin cylindrical shells may exhibit
variations in wall thickness. In spite of the fact that buckling of uniformly compressed
cylindrical shells has been studied intensively for the past several decades, the influence of
thickness variation on the buckling load has seldom been studied. In the previous research,
we have investigated the effect of thickness variation on the axial buckling of otherwise
perfect isotropic shells (Koiter e al., 1994a) and imperfect isotropic shells (Koiter ef al.,
1994b). These studies resulted in a conclusion that, although the thickness variation pattern
in the form of the classical axisymmetric buckling mode may have some deleterious effect
on the load-bearing capacity, the most detrimental effect of thickness variation occurs when
the wave number of the axisymmetric thickness variation pattern is twice that of the classical
buckling mode. Asymptotic relationships between the buckling load reduction rate and the
thickness variation parameter were established for isotropic shells of non-uniform thickness
(Koiter et al., 1994a, 1994b).

The present study aims at the combined effect of axisymmetric thickness variation and
axisymmetric initial imperfection on the buckling behavior of composite shells. We approach
this problem by using Koiter’s energy criterion of elastic stability (Koiter, 1945, 1966,
1980). Here, we consider the small axisymmetric thickness variation, and as a first approxi-
mation, only terms up to the first order of thickness variation parameter are retained. The
final product of this discussion is again an asymptotic formula which relates the thickness
variation parameter and initial imperfection amplitude to the buckling load of the structure.
Therefore, this study is a direct generalization and extension of our former investigation
(Koiter er al., 1994a, 1994b) to the anisotropic case. The asymptotic formula obtained
herein encompasses the isotropic shell. Comparisons with results obtained by the computer
codes BOSOR4 and PANDAZ? are provided.
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2. FORMULATION BY THE ENERGY CRITERION

The nonlinear strain-displacement relations for cylindrical shells are
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where x and y are the axial and circumferential coordinates in the shell middle surface;
and v are the shell displacements along axial and circumferential directions, and w is the
radial displacement, positive outward ; ¢,, ¢, and y,, are strain components; k., k, and k,,
are middle surface curvatures of the shell; R is the radius of the cylinder. ‘

Thickness variation of the laminated shell invariably exists due to imprecision involved
in the fabrication process. Here we discuss the case that the thickness variation is axi-
symmetric and of uniform configurational nature: each lamina has the same variational
pattern:

L) i) =1~ 8 @
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where A, and A, are the thickness and the nominal thickness for the &-th layer, respectively;
¢ and p, are the non-dimensional parameters indicating the magnitude and wave number
of the thickness variation, assumed to be the same for all the constituent layers ; K represents
the total number of layers in the laminate. At first sight, the perfect homology of the
thickness variation may appear as a restrictive assumption. If the constituent layers are
produced by the same manufacturing process according to the same specification, one can
not rule out the existence of similar deviations from uniform thickness. Such an assumption
may shed some light to the question of thickness variation and lead to a tractable analysis.
However, most shells are manufactured by being wound on a mandrel. The inner wall of
the shell would probably be flat and the outer wall would have all the thickness variation.
In future, some numerical results will be reported for a variable thickness case where the
inner surface is at a constant radius and all the thickness variation occurs on the outer
surface. Here we assume that the middle surface of the shell with thickness variation only
(no geometric imperfection) forms a perfect cylinder.

With the model presented in eqn (2), elements of the stiffness matrices [A], [B] and [D]
for the laminated shell with variable thickness become

K K
Au‘ = kzl(Q_ij)k(hk —h_y) = H(x) kZl(Q—ij)k(hO,k_hO,k—l) = H(x)aij
1 X . 1 Ko ,
B, = 5}; Q)i —hi_y) = E[H(X)]2 kzl(Qij)k(h(:;,k—hé,k~l) = [H(x)]"b,
K - 1 L.
Dj = %kz, (Qij)k(klz _h;%—l) = § [H(x)]3 kz,l (Qij)k(hg,k ‘_hg.k-l) = [H("C)]3d;j

(Gj=126) Q)

where a;;, b, and d,; are elements of stiffness matrices for the corresponding uniform laminate
with thickness /,; ;s are the transformed reduced stiffnesses of the individual lamina and
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do not depend on the thickness. In the following, use will be made of the transformed
stiffness matrices [4*], [B*] and [D*}], which are related to the matrices in (3) as follows:

[4*] = [4)~", [B*] = [B][4], [D*] = [D]—[B][4*][B] (4)

Thus

% __
AY =

) al, Bf=Hx)bDi=[HX)]d} (5)

where [a¢*], [6*] and [¢*] are counterparts, in the uniform laminate, of the transformed
stiffness matrices [4*], [B*] and [D*] . They are given by

[@*] = [a]™", [6*] = [blla], [d*] = [d]—[b][a*][B]. ()

We will deal with symmetric laminates, for which there is no coupling between bending
and extension. Thus, we have

B,=0, BX=0 (ij=12.6). (7

The constitutive relations for the anisotropic laminate are (Vinson and Sierakowski,
1986)
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where N,, N, and N,, are stress resultants, M,, M, and M,, are bending and twisting

moments, acting on the mid-surface of a laminate.
Membrane strain energy of a laminated cylindrical shell of length L is

0 0

1 2nR (L
Up =5 J f(Nxex+Nye,,,+Nw~/r,,)dxdy. (10)
Bending strain energy reads

1 2zR 'L
Ub = EJ J (MXKX + My Ky + Mxy ny)dXdy' (1 1'
0 0

For the shell under axial uniform end compression N, potential energy of the applied
load takes the form

1 [27R (L 8 owy \?
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where wy is the geometric initial imperfection.
Thus, the total potential energy is
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M=U,+U,+Q (13)

or, with use of the constitutive relations (8) and (9):
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Substitution of eqn (1) into the above formula leads to the energy expression in terms of
displacements u, v, w:
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In Koiter’s energy criterion of elastic stability, variations of energy are performed at the
fundamental (pre-buckling) state.
The second variation of the energy for buckling modes is

Patid = [T (2 12 (00 ), 2y
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We will discuss the effect of the most critical type of axisymmetric geometrical imper-
fection wo(x) = — uhy cos (2px/R) (Koiter, 1963 ; Tennyson et al., 1971) where A, is the
nominal thickness of the shell, u is the non-dimensional parameter giving the amplitude of
the imperfection, and p is the wave number of the axisymmetric classical buckling mode,
which is given by (Tennyson et a/., 1971):
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We supplement the second variation with the additional bilinear term due to geometric
initial imperfection
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The third variation of the energy reads
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We now assume that the buckling modes of the shell with a uniform thickness remain a
good approximation for the buckling modes of the shell with small thickness variations.
We are at least ensured that the critical load obtained in this was is, by the energy principle,
an upper bound for the actual critical buckling load.

According to the study of Tennyson et al. (1971), the following expression for the
buckling mode can be adopted for the laminated cylindrical shell with the aforementioned
axisymmetric initial imperfection wy :

2px px  ny
w = bcos R + C,cos R cos R (20)

where b and C, are constants, » is the number of waves in the circumferential direction. If
we recall the shell equilibrium equations in terms of displacements u, v and w (Vinson
Sierakowski, 1986)
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we can obtain the expressions for » and v as follows
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where
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It should be mentioned that in deriving solution (23), we used an assumption in the
studies of Hirano (1979) and Tasi (1966) that the coupling stiffnesses A, A, Dis, and Dy
are zero. They are identically zero for cross-ply laminates. When the laminate is composed
of many layers, these coupling stiffnesses are small and can be neglected.

In our previous numerical analysis of composite shells with axisymmetric thickness
variations (Li et al., 1994), we have shown that, in the absence of the geometric imperfection,
the thickness variation with wave number being twice that of the classical buckling mode
(p1 = 2p) has the most degrading effect of the buckling load. This result is also observed
for isotropic shells (Koiter er al., 1994a, 1994b). Now we are interested in the combined effect
of the most critical geometric imperfection and the most detrimental thickness variation on
the load-carrying capacity.

Substituting eqn (20) and (23) into the second and third variations, we obtain, after
retaining only the first order terms in e:
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The energy expression to be considered is
P2[E]+P11[“_0aE]+P3[E]~ (28)

The equations for the initial post-buckling behavior are furnished by setting the partial
derivatives of the energy expression (28) with respect to b and C, equal to zero:
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With the solution C, = 0 from eqn (30), eqn (29) yields
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Bifurcation buckling with respect to the asymmetric mode with amplitude C, occurs at

b= —
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Equating the above two expressions for b, we obtain the equation for the critical buckling
load N,

3 1, R? 1 , 1
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11
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1 1 1
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2 2
ai»n 1 1y, 5 1
+ ) ( 1+28>+a12<1—28>p +4a,,p°0, 1+§a
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In solving eqn (33), integer search must be performed with respect to the circumferential
wave number # to arrive at the lowest value of N,.

We define the non-dimensional critical load parameter A (sometimes referred to as
knockdown factor in the literature) as

Ny

l:
Nd

(34)

where N, is the classical buckling load in the absence of both initial imperfection and
thickness variation. N, is given by (Vinson and Sierakowski, 1986)

mm

N,=min{N,,}, N, — (£>z Cy,Cy,C33+2C,C3C5—C15Cy, — C3,Cy —szcﬁ
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(35)

where
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3. RESULTS AND DISCUSSION

Axial buckling loads can be determined from eqn (33) for composite cylindrical shells
containing a small axisymmetric initial imperfection and a small axisymmetric thickness
variation. For practical purposes, the results thus obtained should be considered conserva-
tive, since the most detrimental case of geometric imperfection and thickness variation is
investigated. However, since we ignored in our derivation the higher order terms in ¢, the
results from the present study should not be deemed accurate for shells having large
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thickness variation. Also, the results may not be conservative from a design point of view
because we are limited here to axisymmetric variations.

As a numerical example, we discuss shells made of carbon/epoxy laminae, whose elastic
moduli are E, = 13.75x 10° psi, E; = 1.03 x 10° psi, v;, = 0.25, G, = 0.42 x 10 psi. The
shell is 6 inches in radius and 30 inches in length and is composed of ten equally thick
layers, each being 0.012 inch thick. The laminate configuration is [0/ —8/6/ — 0/6),,,,, with
the fiber angle 8 varying from 0° to 90°.

Solving eqn (33) numerically for the critical load N, with integer search performed
simultancously with respect to the circumferential buckling wave number », and then non-
dimensionalizing the result according to (34), we obtain the critical buckling load factor 4
for different cases of thickness variation parameter ¢ and imperfection amplitude p. The
results are plotted in Figs 1 and 2. The results obtained here confirm numerically the
previous first-order asymptotic formula

i=1-—¢ (37

which holds only for the axisymmetric buckling cases for composite shells without initial
imperfection. It is interesting to note that as long as the axisymmetric buckling mode
dominates, the buckling load reduction factor 4 remains constant, irrespective of the
change in the laminate construction. However, once the shell has an axisymmetric initial
imperfection, the buckling mode becomes non-axisymmetric, and the buckling load
reduction is strongly influenced by the stacking sequence of the laminae. Figure 3 depicts
the results of the buckling load factor A for shells of different laminate profiles, such as
[45°/ —45°/45°/ —45°/45°],,,, and [16°/ —16°/16°/ —16°/167],,,,, together with the results for
corresponding isotropic shells. It can be seen from this figure that the load-carrying capacity
of composite shells is sensitive to thickness variation, and especially sensitive to initial
geometric imperfection. The imperfection sensitivity is comparable to that of an isotropic
shell. Although axisymmetric geometric initial imperfections cause most of the buckling
load reduction, further degradation in the load-bearing capacity of the shell due to axi-
symmetric thickness variations should not be overlooked.
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Fig. 1. Effect of thickness variation and imperfection on the buckling load (laminate configuration
[0/ —8/6/ —8/6},,,, thickness variation parameter ¢ = 0.1).
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Fig. 3. Buckling load reductions in shells with different laminate configurations (Case 1: isotropic;
Case 2: [45/ —45/45/—45/45],,,; Case 3: [16/ — 16/16/ —16/16],,,,).

In order to check the accuracy of eqn (33), we used BOSOR4 (Bushnell, 1974), a
computer code for stress, buckling and vibration of shells of revolution, to generate a set
of comparable data for the non-dimensional critical load parameter 4. Since the classical
buckling load has been used to non-dimensionalized the critical buckling load. it is necessary
to check the results from eqn (35) with their counterparts from the numerical software so
that a common basis can be established for the follow-up comparison of results for non-
dimensional critical load 4. For this purpose, software package PANDA2, with use of
either the shallow shell or Sanders’ theories (Bushnell, 1987, 1996) was run in order to
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Fig. 4. Comparison of classical buckling load from different methods.

compute the classical buckling load N,. Predictions are plotted in Fig. 4, together with
those from eqn (35) and those from BOSOR4, which is based on Sanders’ equations.

Figure 4 shows that the classical buckling loads from different sources agree quite well
except in the range 53° < 6 < 80°. For this range eqn (35) and PANDAZ2 vyield similar
predictions with the shallow shell “switch’ turned on in PANDA2. However, a significant
discrepancy exists between predictions from shallow shell theory and Sander’s theory. For
537 < f < 807 the shallow shell theory is significantly unconservative. A more refined theory
is required for the accurate prediction of “classical” buckling load, N, in this range of 6.

In the BOSOR4 models of the axisymmetrically imperfect shells, half of the 30 inch
length of the cylindrical shell is represented, with symmetry conditions imposed at x = 15
inches. The 15 inch long BOSOR4 model is subdivided into six segments in order to get
enough nodal points for a good convergence and in order to represent accurately the
sinusoidal variation which is equal to the axial wavelength of the axisymmetric buckling
mode of the perfect shell. The sixth segment, adjacent to the midlength plane of symmetry,
is half as long. BOSOR4 can handle orthotropic walls with meridionally varying thickness.
The shell wall in the BOSOR4 model has the same constitutive matrix as the 10-layer
laminated shell with fiber angle 8 = 16°. (Note: in the BOSOR4 model the same off-
diagonal “‘anisotropic” terms in the integrated constitutive law are assumed to be zero as
is the case in the theory presented in this paper.)

Figure 5 displays the results of the non-dimensional critical load parameter 2 obtained
from the asymptotic formula (eqn 33) and from BOSOR4 for a 10-layer composite shell
(laminate configuration: [16°/—16°/16°/—16°/167],,,) which contains both the initial
imperfection and the thickness variation. It can be seen from this figure that the asymptotic
formula predicts the knockdown factor quite accurately.

Finally, it is worth mentioning that as a special case if we let

Eh, 1—v
a11:a22=1_v25 iy = vd, 066=Tana Ao = G =0
B 1—v
dy, :dzzzma d, =vdy, dssszn, die=1dyg=0 (38)
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Fig. 6. Comparison of results using Koiter’s circle and those using integer search for isotropic shells
with thickness variation ¢ = 0.2.

where E is the Young’s modulus, and v is the Poisson’s ratio, and furthermore, if we select
the asymmetric mode at the top of the Koiter's semi-circle (Koiter, 1980), that is, let
p=n=I[3(1—-v?)R?/2h,]'?, eqn (33) reduces to its counterpart in the isotropic shell

case,
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A=) (1—e—2)— §—~—V3(21_"2)/m(1 + éa) =0.

(39)

Equation (39) is identical to eqn (21) in our previous work (Koiter ez al., 1994b) if the
small term ¢/6 is ignored compared with unity.

Figure 6 shows the comparison of results in the isotropic shell case using Koiter’s semi-
circle and those using integer search with respect to the circumferential wave number ». It
is seen that the agreement is excellent.

One should stress here that in order to obtain good correlation of test and theory, the
buckling load of perfect shells with nonlinear bending prebuckling effects should be cal-
culated when the effects of boundary conditions become significant, as in the case for short
shells and shells of intermediate length, for which the “boundary layer” length, (r7)'?
comprises a significant fraction of the entire length of the shell.
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